Selasa, 05 November 2013

PENGANTAR PELUANG

Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Singkatnya, statistika adalah ilmu yang berkenaan dengan data. Istilah ‘statistika’ (bahasa Inggris: statistics) berbeda dengan ‘statistik’ (statistic). Statistika merupakan ilmu yang berkenaan dengan data, sedang statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data.
Dari kumpulan data, statistika dapat digunakan untuk menyimpulkan atau mendeskripsikan data; ini dinamakan statistika deskriptif. Sebagian besar konsep dasar statistika mengasumsikan teori probabilitas. Beberapa istilah statistika antara lain: populasi, sampel, unit sampel, dan probabilitas.
DEFINISI PROBABILITAS
Harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi, di antara keseluruhan peristiwa yang mungkin terjadi.
  • Contoh 1:Sebuah mata uang logam mempunyai sisi dua (H & T) kalau mata uang tersebut dilambungkan satu kali, peluang untuk keluar sisi H adalah ½.
  • Contoh 2:Sebuah dadu untuk keluar mata ‘lima’ saat pelemparan dadu tersebut satu kali adalah 1/6 (karena banyaknya permukaan dadu adalah 6)
Rumus :
P (E) = X/N
P: Probabilitas
E: Event (Kejadian)
X: Jumlah kejadian yang diinginkan (peristiwa)
N: Keseluruhan kejadian yang mungkin terjadi
Di dalam suatu pabrik ada 30 wanita dan 70 laki-laki. Sehabis makan siang yang disediakan pabrik akan ditanyakan “apakah makanan tadi cukup baik”. Untuk itu akan di undi (di acak) siapa orang yang akan ditanyakan pendapatnya. Probabilitas akan terambil seorang buruh wanita adalah 30/100 -> P (0,3)
Probabilitas yang rendah menunjukkan kecilnya kemungkianan suatu peristiwa akan terjadi.
Probabilitas adalah suatu perhitungan yang didasarkan pada peluang atau kemungkinan.Manfaat mempelajari probabilitas sangat berguna untuk pengambilan keputusan yang tepat, karena kehidupan di dunia tidak ada kepastian, sehingga diperlukan untuk mengetahui berapa besar probabilitas suatu peristiwa akan terjadi. Probabilitas dinyatakan dalam angka pecahan antara 0 sampai 1 atau dalam persentase.
Beberapa istilah penting dalam probabilitas adalah:
  • Percobaan
  • Hasil
  • Peristiwa
Ada tiga pendekatan dalam menentukan probabilitas yaitu:
  1. Pendekatan klasik yang memberikan probabilitas yang sama.
  2. Pendekatan frekuensi relatif yang memperhatikan kejadian yang telah terjadi.
  3. Pendekatan subjektif berdasarkan penilaian individu.
1. PENDEKATAN KLASIK
Probabilitas/peluang merupakan banyaknya kemungkinan-kemungkinan pada suatu kejadian berdasarkan frekuensinya.
Jika ada a kemungkinan yang dapat terjadi pada kejadian A dan ada b kemungkinan yang dapat terjadi pada kejadian A, serta masing-masing kejadian mempunyai kesempatan yang sama dan saling asing, maka probabilitas/peluang bahwa akan terjadi a adalah:
P (A) = a/a+b ; dan peluang bahwa akan terjadi b adalah:  P (A) = b/a+b
Contoh:
Pelamar pekerjaan terdiri dari 10 orang pria (A) dan 15 orang wanita (B). Jika yang diterima hanya 1, berapa peluang bahwa ia merupakan wanita?
Jawab:
P (A) = 15/10+15 = 3/5
2. PENDEKATAN FREKUENSI RELATIF
Nilai probabilitas/peluang ditentukan atas dasar proporsi dari kemungkinan yang dapat terjadi dalam suatu observasi/percobaan (pengumpulan data).
Jika pada data sebanyak N terdapat a kejadian yang bersifat A, maka probabilitas/peluang akan terjadi A untuk N data adalah: P (A) = a/N
Contoh:
Dari hasil penelitian diketahui bahwa 5 orang karyawan akan terserang flu pada musim dingin. Apabila lokakarya diadakan di Puncak, berapa probabilitas terjadi 1 orang sakit flu dari 400 orang karyawan yang ikut serta?
Jawab:
P (A) = 5/400 = P (A) = 1/80
3. PENDEKATAN SUBYEKTIF
Nilai probabilitas/peluang adalah tepat/cocok apabila hanya ada satu kemungkinan kejadian terjadi dalam suatu kejadian ditentukan berdasarkan tingkat kepercayaan yang bersifat individual (misalnya berdasarkan pengalaman).
Probabilitas disajikan dengan symbol P, sehingga P(A) menyatakan probabilitas bahwa kejadian A akan terjadi dalam observasi atau percobaan tunggal, dengan 0 ≤ P(A) ≤ 1.
Dalam suatu observasi/percobaan kemungkinan kejadian ada 2, yaitu “terjadi (P(A)) atau “tidak terjadi” (P(A)’), maka jumlah probabilitas totalnya adalah P(A) + P(A)’ = 1
Dalam perhitungan probabilitas ada beberapa asas peristiwa yang sering terjadi, yaitu:
  1. Asas peristiwa mutually exclusive.
  2. Asas peristiwa non exclusive (tidak saling asing).
  3. Asas peristiwa independen (bebas) yang mencakup tiga bagian: marginal, gabungan, dan peluang bersyarat.
  4. Dependen , yang terbagi dalam tiga bagian: marginal, gabungan, dan peluang bersyarat.
Ruang sampel adalah alternatif dari seluruh kejadian dalam beberapa percobaan yang dilakukan berulangkali.
Distribusi probabilitas (peluang) adalah sebuah daftar dari keseluruhan hasil suatu percobaan kejadian yang disertai dengan nilai probabilitas masing-masing hasil (event).
Perhitungan Nilai Peluang Hukum Probabilitas
Asas perhitungan probabilitas dengan berbagai kondisi yang harus diperhatikan:
1. Hukum Pertambahan
terdapat 2 kondisi yang harus diperhatikan yaitu:
  • Mutually Exclusive (saling meniadakan)
Rumus: P (A U B) = P (A atau B)= P (A) + P (B)
AB
Contoh:
Probabilitas untuk keluar mata 2 atau mata 5 pada pelemparan satu kali sebuah dadu adalah:
P(2 U 5) = P (2) + P (5) = 1/6 + 1/6 = 2/6
  • Non Mutually Exclusive (dapat terjadi bersama)
Peristiwa Non Mutually Exclusive (Joint) dua peristiwa atau lebih dapat terjadi bersama-sama (tetapi tidak selalu bersama. Contoh penarikan kartu as dan berlian
P (A U B) =P(A) + P (B) – P(A ∩B)
AB1
Peristiwa terjadinya A dan B merupakan gabungan antara peristiwa A dan peristiwa B. Akan tetapi karena ada elemen yang sama dalam peristiwa A dan B, gabungan peristiwa A dan B perlu dikurangi peristiwa di mana A dan B memiliki elemen yang sama.
Dengan demikian, probabilitas pada keadaan di mana terdapat elemen yang sama antara peristiwa A dan B maka probabilitas A atau B adalah probabilitas A ditambah probabilitas B dan dikurangi probabilitas elemen yang sama dalam peristiwa A dan B.
2. HUKUM PERKALIAN
Terdapat dua kondisi yang harus diperhatikan apakah kedua peristiwa tersebut saling bebas atau bersyarat.
  • Peristiwa Bebas (Independent)
Apakah kejadian atau ketidakjadian suatu peristiwa tidak mempengaruhi peristiwa lain. Contoh: Sebuah coin dilambungkan 2 kali maka peluang keluarnya H pada lemparan pertama dan pada lemparan kedua saling bebas.
P(A ∩B) = P (A dan B) = P(A) x P(B)
Contoh soal 1:
Sebuah dadu dilambungkan dua kali, peluang keluarnya mata 5 untuk kedua kalinya adalah:
P (5 ∩ 5) = 1/6 x 1/6 = 1/36
Contoh soal 2:
Sebuah dadu dan koin dilambungkan bersama-sama, peluang keluarnya hasil lambungan berupa sisi H pada koin dan sisi 3 pada dadu adalah:
P (H) = ½, P (3) = 1/6
P (H ∩ 3) = ½ x 1/6 = 1/12
  • Peristiwa tidak bebas (Hk. Perkalian)
Peristiwa tidak bebas > peristiwa bersyarat (Conditional Probability).
Dua peristiwa dikatakan bersyarat apabila kejadian atau ketidakjadian suatu peristiwa akan berpengaruh terhadap peristiwa lainnya.
Contoh: Dua buah kartu ditarik dari set kartu bridge dan tarikan kedua tanpa memasukkan kembali kartu pertama, maka probabilitas kartu kedua sudah tergantung pada kartu pertama yang ditarik.
Simbol untuk peristiwa bersyarat adalah P (B│A) -> probabilitas B pada kondisi A
P(A ∩B) = P (A) x P (B│A)
Contoh :
Dua kartu ditarik dari satu set kartu bridge, peluang untuk yang tertarik keduanya kartu as adalah sebagai berikut: Peluang as I adalah 4/52 -> P (as I) = 4/52
Peluang as II dengan syarat as I sudah tertarik adalah 3/51
P (as II │as I) = 3/51
P (as I ∩ as II) = P (as I) x P (as II│ as I) = 4/52 x 3/51 = 12/2652 =1/221
Prinsip Menghitung
  • Faktorial Bilangan Asli
Definisi : Hasil perkalian semua bilangan bulat positif secara berurutan dari 1 sampai dengan n disebut n faktorial. Dari definisi faktorial tersebut, maka dapat dituliskan prinsip menghitung faktorial sebagai berikut :
n ! = n x (n-1) x (n-2) x (n-3) x … 3 x 2 x 1
n ! dibaca n faktorial
Telah diambil kesepakatan bahwa : 0 ! = 1
Contoh:
6! = 6 x 5 x 4 x 3 x 2 x 1 = 720
  • Kombinasi
Kombinasi adalah campuran atau gabungan atau susunan dari semua atau sebagian elemen dari suatu himpunan yang tidak mementingkan urutan elemen.
Kombinasi dapat dirumuskan sebagai berikut :
n = n! /r ! ( n – r )!
Contoh :
Untuk pemilihan 4 mahasiswa menjadi pengurus himpunan mahasiswa jurusan matematika FMIPA UNM terdapat 8 mahasiswa prodi pendidikan matematika dan 6 mahasiswa prodi matematika yang memenuhi syarat untuk dipilih. Berapa banyak cara memilih pengurus bila semua anggota pengurus dari prodi yang sama?
Jawaban :
Dari prodi pendidikan matematika 8 orang, harus dipilih 4 orang. Berarti kita hitung dengan menggunakan C (8,4) = 70 cara
Sedangkan dari prodi matematika, kita dapat memilih dengan C (6,4) = 6!/2!4! = 36x5x4!/2×4! = 15 cara.
Sehingga jika yang terpilih adalah mahasiswa dari prodi yang sama, kemungkinan banyak cara memilih adalah C (8,4) + C (6,4) = 70 + 15 = 85 cara.
  • Permutasi
Permutasi adalah menggabungkan beberapa objek dari suatu grup dengan memperhatikan urutan. Di dalam permutasi, urutan diperhatikan.
{1,2,3} tidak sama dengan {2,3,1} dan {3,1,2}
Contoh:
Ada sebuah kotak berisi 3 bola masing-masing berwarna merah, hijau dan biru. Jika seorang anak ditugaskan untuk mengambil 2 bola secara acak dan urutan pengambilan diperhatikan, ada berapa permutasi yang terjadi?
Jawaban:
Ada 6 permutasi yaitu; M-H, M-B, H-M, H-B, B-M, B-H.
Permutasi Tanpa Pengulangan
Jika urutan diperhatikan dan setiap objek yang tersedia hanya bisa dipilih atau dipakai sekali maka jumlah permutasi yang ada adalah:
Permutasi1

di mana n adalah jumlah objek yang dapat kamu pilih, r adalah jumlah yang harus dipilih dan ! adalah simbol faktorial.
Contoh:
ada sebuah pemungutan suara dalam suatu organisasi. Kandidat yang bisa dipilih ada lima orang. Yang mendapat suara terbanyak akan diangkat menjadi ketua organisasi tersebut. Yang mendapat suara kedua terbanyak akan diangkat menjadi wakil ketua. Dan yang mendapat suara ketiga terbanyak akan menjadi sekretaris. Ada berapa banyak hasil pemungutan suara yang mungkin terjadi? Dengan menggunakan rumus di atas maka ada 5!/(5-3)! = 60 permutasi.
Umpamakan jika n = r (yang menandakan bahwa jumlah objek yang bisa dipilih sama dengan jumlah yang harus dipilih) maka rumusnya menjadi:
 Permutasi2 karena 0! = 1! = 1
Contoh:
ada lima kotak kosong yang tersedia. Kelima kotak kosong itu harus diisi (tidak boleh ada yang kosong). Kelima kotak kosong itu hanya boleh diisi dengan angka 1,2,3,4,5. Ada berapa banyak cara untuk mengisi kotak kosong? Dengan menggunakan rumus n! maka ada 5! = 120 permutasi.
Permutasi Pengulangan (dari unsur-unsur yang sama)
Dari huruf-huruf pada kata MATEMATIKA, berapa banyaknya pasangan huruf yang dapat dibentuk? Jika mengingat kembali tentang permutasi, seharusnya banyaknya pasangan yang dapat dibentuk adalah sebanyak 10! pasangan.
Namun, apakah M1A1TEM2A2TIKA3 sama dengan M1A3TEM2A2TIKA1?
Ambil P sebagai jumlah permutasi berbeda untuk kesepuluh huruf.  Jumlah permutasi dari kedua huruf M adalah 2! dan jumlah permutasi dari ketiga huruf A adalah 3!  Sehingga jumlah total permutasi adalah  2! x 3! x P.
Dengan demikian, diperoleh : 2!3!P = 10! Sehingga :
 hal12a
Contoh tersebut mengantarkan kita kepada definisi permutasi yang mengandung unsur yang sama: Misalnya suatu himpunan yang terdiri atas n elemen memiliki r1 elemen jenis pertama yang sama, r2 elemen jenis kedua yang sama, ., dan rk elemen jenis ke k yang sama, dengan :
r1 + r2 + . rk < n
maka banyak permutasi berbeda dari n elemen diberikan oleh :
Contoh :
    1. Jika huruf-huruf pada kata “BOROBUDUR” dipertukarkan, berapa banyak susunan huruf berbeda yang dapat diperoleh?
Jawaban :
Pada kata BOROBUDUR terdapat 9 huruf dengan huruf B diulang 2 kali, huruf O diulang 2 kali, huruf R diulang 2 kali, dan huruf U diulang 2 kali. Banyaknya susunan huruf berbeda yang diperoleh diberikan oleh rumus berikut:
hal13a
Permutasi Siklis
Permutasi siklis menganggap elemen disusun secara melingkar.
    h  a    
  g      b  
  f      c  
    e  d  
Dengan menganggap panjang untai (atau banyaknya elemen) adalah n, dan karena elemen awal tidak boleh diubah-ubah posisinya, maka banyaknya elemen yang dapat berubah-ubah posisinya adalah n-1. Dengan demikian kita cukup mempermutasikan elemen yang dapat berubah-ubah posisi saja, yaitu sebanyak e284a61c63332f2790cb83f8f11ec36a.
Contoh :
Sebuah keluarga terdiri atas 5 orang. Mereka akan duduk mengelilingi sebuah meja bundar untuk makan bersama. Berapa banyaknya cara agar mereka dapat duduk mengelilingi meja makan tersebut dengan urutan yang berbeda?
Jawaban :
Banyaknya cara agar 5 orang dapat duduk mengelilingi meja makan sama dengan banyak permutasi siklis 5 elemen, yaitu :
(5 -1)! = 4! = 4 x 3 x 2 x 1 = 24
Dengan menganggap panjang untai (atau banyaknya elemen) adalah n, dan karena elemen awal tidak boleh diubah-ubah posisinya, maka banyaknya elemen yang dapat berubah-ubah posisinya adalah n-1. Dengan demikian kita cukup mempermutasikan elemen yang dapat berubah-ubah posisi saja, yaitu sebanyak (n-1)!.
Teorema Bayes
Dalam teori probabilitas dan statistika, teorema Bayes adalah sebuah teorema dengan dua penafsiran berbeda. Dalam penafsiran Bayes, teorema ini menyatakan seberapa jauh derajat kepercayaan subjektif harus berubah secara rasional ketika ada petunjuk baru.
Dalam penafsiran frekuentis teorema ini menjelaskan representasi invers probabilitas dua kejadian. Teorema ini merupakan dasar dari statistika Bayes dan memiliki penerapan dalam sains, rekayasa, ilmu ekonomi (terutama ilmu ekonomi mikro), teori permainan, kedokteran dan hukum. Penerapan teorema Bayes untuk memperbarui kepercayaan dinamakan inferens Bayes.
Rumus Teori Bayes :
250743194a26e14396224245850496b0Jadi, bisa dinyatakan P(A|B) berarti peluang kejadian A bila B terjadi dan P(B|A) berarti peluang kejadian B bila A terjadi.
Diagram Pohon Probabilitas
Diagram Pohon merupakan suatu diagram yang menyerupai pohon dimulai dari batang kemudian menuju ranting dan daun. diagram pohon dimaksudkan untuk membantu menggambarkan probabilitas atau probabilitas bersyarat dan probabilitas bersama. diagram pohon sangat berguna untuk menganaliusis keputusan-keputusan dimana terdapat tahapan-tahapan pekerjaan.
Probability_tree_diagram.svg

1 komentar: